
 

i 

MP090284 

MITRE PRODUCT  

Cursor-on-Target Message Router User’s Guide 

 

November 2009 

Michael J. Kristan 
Jeffrey T. Hamalainen 
Douglas P. Robbins 
Patrick J. Newell 
 

Sponsor: ESC Contract No.: FA8721-10-C-0001 
Dept. No.: E146 Project No.: 031A3MA0-CT 
     
   
 
The views, opinions and/or findings contained in this report are those of 
The MITRE Corporation and should not be construed as an official 
Government position, policy, or decision, unless designated by other 
documentation. 

Approved for public release, distribution unlimited. 

2009 The MITRE Corporation. All Rights Reserved. 

 
202 Burlington Road 
Bedford, Massachusetts 01730 
 
 

mastro
Text Box
Approved for Public Release; Distribution UnlimitedCase # 09-4937



 

ii 

Table of Contents 
 Page 

1 Document Goal 1-1 

2 Cursor-on-Target Information 2-1 

2.1 CoT Base Schema 2-1 

2.2 Cot Sub-Schema 2-3 

2.3 CoT Type Field Details 2-4 

3 Regular Expressions 3-1 

4 Additional Information 4-1 

5 Cursor-on-Targer Message Router Overview 5-1 

6 General Operation 6-1 

6.1 Graphical User Interface 6-1 

6.1.1 PubSub (1) 6-2 

6.1.2 Active Subscription Buttons (2) 6-2 

6.1.3 Active Subscription Window (3) 6-3 

6.1.4 Log Window (5) 6-4 

6.2 Editing Channels 6-4 

6.3 Editing Events 6-6 

6.4 Editing Tests 6-8 

6.5 Editing Mods 6-10 

6.6 Managing Subscriptions and Caches 6-12 

7 Subscription Examples 7-1 

7.1 Blue Force Tracking 7-1 

7.2 RainDrop and ADOCS 7-2 

Appendix A A-1 

 



 

iii 

List of Figures 
 Page 
Figure 2-1.  Basic CoT XML Message   ............................................................................................ 2-1

Figure 6-1.  Message Router Graphical User Interface   ................................................................... 6-1

Figure 6-2.  PubSub Data Window   .................................................................................................. 6-2

Figure 6-3.  Channels Window ....................................................................................................... 6-74 

Figure 6-4.  Channel Manager Window ......................................................................................... 6-76 

Figure 6-5.  Event Parameters Window   ........................................................................................... 6-7

Figure 6-6.  Edit Test Window   ......................................................................................................... 6-9

Figure 6-7.  Edit Mods Window   ..................................................................................................... 6-11

Figure 6-8. Load Window   ............................................................................................................... 6-12

Figure 6-9. Debug Window   ............................................................................................................ 6-13

Figure 7-1.  Example 1 Tests   ............................................................................................................ 7-1

Figure 7-2.  Example 2 Tests Before ADOCS   ................................................................................. 7-3

Figure 8-1.  Subscription XML Example   ......................................... Error! Bookmark not defined.
 



 

v 

List of Tables 
 Page 
Table 2-1.  Required CoT Fields   ...................................................................................................... 2-2

Table 3-1.  Regular Expressions   ....................................................................................................... 3-2

Table 6-1.  Active Subscription Buttons and Functions   .................................................................. 6-3

Table 6-2.  Event Parameters Description   ........................................................................................ 6-8

Table 6-3.  Edit Test “Tests”   ............................................................................................................. 6-9

Table 6-4.  Edit Mods “Edits”   ........................................................................................................ 6-11

Table 8-1.  CoT Subscription Event Schema   ................................... Error! Bookmark not defined.



 

1-1 

1 Document Goal 
This document describes functionality of the MITRE developed, proof of concept message 
router named the Cursor-on-Target Message Router.  The goal is to provide sufficient detail 
to understand its intended use and to facilitate a general development of a test strategy for 
Cursor-on-Target (CoT).  The discussion in this document assumes some familiarity with the 
CoT concepts, schema, and sub-schema.  The next sections include background information 
on CoT and Regular Expressions for reference purposes.  More information about CoT can 
be found at cot.mitre.org.  The remainder of the document demonstrates configuration of 
CoT message subscriptions, examples, and some more advanced uses. 



 

2-1 

2 Cursor-on-Target Information 
The Cursor-On-Target (CoT) data strategy centers on the use of a “common language” for 
tactical systems that is critical in communicating much needed time sensitive position 
information.  Analogous to functioning acceptably in foreign countries, while only learning a 
few important words of the native language, CoT starts with a focus on a particular set of 
important common information on the battlefield.  This is seen as a time sensitive position or 
the “What, When, and Where” (W3) of a specific event.  The proof of concept prototype also 
allows for structured special purpose extensions. 

2.1 CoT Base Schema 
The CoT “base” schema defined in “Event.xsd,” is registered in the DISA DoD XML 
registry and available at the website cot.mitre.org.  It defines a terse schema for representing 
W3 information, with a total of 12 mandatory fields as outlined in Figure 2-1 below, with a 
compliant example message in Table 2-1.  The CoT base schema is terse by design, but also 
defines a mechanism for extension.  The contents of CoT base schema were selected after 
studying a large number of DoD systems and realizing that many of the information 
exchange needs between these systems had a common core set, W3. 

 

  <?xml version='1.0' standalone='yes'?> 
<event version="2.0" 
    uid="J-01334"  
    type="a-h-A-M-F-U-M"  
    time="2005-04-05T11:43:38.07Z" 
    start="2005-04-05T11:43:38.07Z" 
    stale="2005-04-05T11:45:38.07Z" > 
  <detail> 
  </detail> 
  <point lat="30.0090027" lon="-85.9578735" ce="45.3" 
              hae="-42.6" le="99.5"  /> 
</event> 

  <?xml version='1.0' standalone='yes'?> 
<event version="2.0" 
    uid="J-01334"  
    type="a-h-A-M-F-U-M"  
    time="2005-04-05T11:43:38.07Z" 
    start="2005-04-05T11:43:38.07Z" 
    stale="2005-04-05T11:45:38.07Z" > 
  <detail> 
  </detail> 
  <point lat="30.0090027" lon="-85.9578735" ce="45.3" 
              hae="-42.6" le="99.5"  /> 
</event> 

 
Figure 2-1.  Basic CoT XML Message 



 

2-2 

Table 2-1.  Required CoT Fields 

Element Attribute 
Opt/ 
Req 

Definition XML Schema Type 

Event 

version Req 
Schema version of this event 
instance (e.g. 2.0) 

Decimal equal to 2.0 

type Req 
Hierarchically organized hint 
about event type 

string of pattern  
"\w+(-\w+)*(;[^;]*)?" 

uid Req 
Globally unique name for this 
information on this event 

string 

time Req 
time stamp: when the event was 
generated 

dateTime 

start Req 
starting time when an event 
should be considered valid 

dateTime 

stale Req 
ending time when an event 
should no longer be considered 
valid 

dateTime 

how Req 
Gives a hint about how the 
coordinates were generated 

string of pattern “\w-\w” 

opex Opt   
qos Opt   

access Opt   

Point 

lat Req 
Latitude referred to the WGS 84 
ellipsoid in degrees 

decimal -90 to 90 inclusive 

lon Req 
Longitude referred to the WGS 
84 in degrees 

decimal -180 to 180 
inclusive 

hae Req 
Height above the WGS ellipsoid 
in meters 

decimal  

ce Req 
Circular 1-sigma or

decimal  
 a circular 

area about the point in meters 

le Req 
Linear 1-sigma  error or

decimal 
 an 

altitude range about the point in 
meters 

Detail N/A Opt 
An optional element used to hold 
CoT sub-schema. 

empty element 



 

2-3 

2.2 Cot Sub-Schema 
The CoT approach allows for definition of sub-schema based on common information 
exchange needs between systems that extend beyond the information provided by the basic 
W3 schema.  One or more sub-schema may appear in the “detail” element in the base 
schema.  This approach provides additional information exchange capability to the various 
systems that need to exchange more than the common schema allows.  For example, 
community applications that need W3 data exchanges to meet mission requirements may also 
need to know about the velocity of an event as well.  If the velocity information was added to 
extend the base schema, CoT would have to define “no statement” values for these fields 
when they are not used, or make them optional.  This will add complexity to software 
development projects that use the common W3 schema.  CoT sub-schemas provide a means 
to extend CoT without the need for special-case processing.  Other advantages to this 
approach include the encapsulation of data definition in small, manageable “standards,” 
components.  This hierarchical extension mechanism allows for the representation of varying 
degrees of detailed information, and acts as a natural filter mechanism for specific details 
based on one of many factors that includes access, security, and bandwidth limitations.  At 
the time this document was authored, there are 12 defined sub-schemas. Of these 12, the 4 
outlined in Table 2-2 are used by the MTCD Plug-In adapter.  All sub-schema definitions can 
be viewed or downloaded from the cot.mitre.org website. 

 

Table 2.2.  CoT Sub-Schema Examples 

Sub-Schema XSD Name Description 

track CoT_track.xsd Velocity vector information 

_flow-tags_ CoT__flow-tags_.xsd 
Time stamped “fingerprints” for systems which 
have touched a CoT event. Used for work flow 
and routing decisions for CoT messages. 

uid CoT_uid.xsd 
Provides a place to annotate a CoT message with 
the unique identifier used by a particular system. 
(eg. add the TJ track number) 

remarks CoT_remarks.xsd Provides a place to annotate CoT with free text 
information. 

 



 

2-4 

2.3 CoT Type Field Details 
The Cursor-on-Target Message Router often uses the CoT type string as a test for 
publication.  For this reason, the type field is briefly explained here.   

The set of possible CoT types is defined by a tree structure.  The type attribute, as defined in 
Event.xsd, identifies a specific node in the type tree.  It is a hyphen delimited set of alpha-
numeric characters.  For example, a-f-G represents a type tree of “atoms-friendly-ground.”  
The root element (first character in the type field) of the tree has several values to include 
atoms, bits, reservations, capability descriptions, etc.  Figure 2-3 shows a diagram of valid 
atomic events. 

 

( ) Code(s)]Function  2525-STD-[MIL  

(Other) 
)Subsurface (Sea 

Surface) (Sea 
Ground) 

(Air) 
(Space) 

 

(other) 
specified) (none 

(faker) 
(joker) 

(hostile) 
suspect)( 
(neutral) 
(friend) 

friend) (assumed 
(unknown) 
(pending) 

atom  

 nsCombinatioEvent  Atomic Valid
















−























−−

=

X
U

S
G

A
P

x
o

k
j

h
s
n
f

a
u
p

a
 

Figure 2.3. Valid Atomic Event Combinations 
 

The atoms branch of the tree leverages the MIL-STD-2525B specification for defining the 
detailed type.  The string is broken out as atoms-affiliation-battle dimension from 2525-
function code from 2525.  For example, the type string “a-h-A-M-A” represents “atoms-
hostile-Airborne-Military-Attack/Strike.”   The lower case a-h prefix is defined in Event.xsd.  
The first -A- is the MIL-STD-2525 battle dimension (air, ground, surface, etc).  The 
remaining characters are the MIL-STD-2525 function code.  In this example, M-A represents 
“Military-Attack/Strike.”  In the discussion found below, the “atoms” branch of the type 
string will be described by the term’s affiliation, battle dimension, and 2525 function code 
per the description in this paragraph.  For more information on the other root elements, see 
the cot.mitre.org website. 



 

3-1 

3 Regular Expressions 
Regular Expressions (Reg Exps) are a special syntax for rule-based tests on strings of 
characters.  Reg Exps form logic to check strings for specific character patterns.  A Reg Exp, 
for instance, could check a string to see if it was “foo”, or if it started with a digit.  Regular 
expressions can also be strung together to form very complex chains, for instance testing for 
a string that starts with three non-digits, followed by a vowel, and ends in no more than 
seven blank spaces.  A comprehensive list of regular expressions can be found in Table 3-1, 
which is followed by examples.   

(The following table and examples are from 
http://aspn.activestate.com/ASPN/docs/ActivePerl/lib/Pod/perlintro.html) 

 

Some brief examples: 

    ^\d+             string starts with one or more digits 

    ^$                nothing in the string (start and end are adjacent) 

    (\d\s){3}      three digits, each followed by a whitespace character (eg "3 4 5 ") 

    (a.)+            matches a string in which every odd-numbered letter is ‘a’ (eg "abacadaf") 

          (\D){3}[aeiou](\s{0,7})$  three non-digits, followed by a vowel and ending with no   
more than seven blank spaces. 

http://aspn.activestate.com/ASPN/docs/ActivePerl/lib/Pod/perlintro.html�


 

3-2 

 

Table 3-1.  Regular Expressions 

Reg Exp Description 

 . a single character 

\s a whitespace character (space, tab, newline) 

\S non-whitespace character 

\d a digit (0-9) 

\D a non-digit 

\w a word character (a-z, A-Z, 0-9, _) 

\W a non-word character 

[aeiou] matches a single character in the given set 

[^aeiou] matches a single character outside the given set 

(foo|bar|baz) matches any of the alternatives specified 

^ start of string 

$ end of string 

Quantifiers can be used to specify how many of the previous thing you want to match on, where ``thing'' means 
either a literal character, one of the metacharacters listed above, or a group of characters or metacharacters in 
parentheses. 

* zero or more of the previous thing 

+ one or more of the previous thing 

? zero or one of the previous thing 

{3} matches exactly 3 of the previous thing 

{3,6} matches between 3 and 6 of the previous thing 

{3,} matches 3 or more of the previous thing 

 
 



 

4-1 

4 Additional Information 
For additional information, please see our web site: http://cot.mitre.org. 

 

 

http://cot.mitre.org/�


 

5-1 

5 Cursor-on-Target Message Router Overview 
The Cursor-on-Target Message Router will route CoT messages from one host to another.  
The routing is rule-based and provides a one-to-one or one-to-many route capability.  A 
subscription is set up in the Cursor-on-Target Message Router that contains the routing rules 
and other pertinent information, such as destination address.  Multiple subscriptions can be 
created and set to filter messages differently and reroute information to different hosts. 

The rules are broken into two types of test:  spatial-temporal bounds and regular expression.  
Spatial-temporal bounds refer to the CoT message location, or “point.”  A matching message 
would have its latitude, longitude, and height within the bounds of the subscriptions test.  
Regular expressions are more varied tests that can be specially tailored to check any CoT 
attribute. 

In addition to routing, messages can be modified before transmission.  Also, all incoming 
messages are cached for future use.  This allows new subscriptions to reroute matching 
messages that are still active.  Caching occurs before modification. 

The Cursor-on-Target Message Router is a stand-alone application that can be installed on 
any Windows or Linux machine, provided it has a serial or network connection to other CoT 
applications. 



 

6-1 

6 General Operation 
This section is designed to highlight the necessary features required to set up a basic message 
subscription.  While this isn’t intended as a complete user’s guide, it should contain 
sufficient detail to set up and begin using the Cursor-on-Target Message Router for testing 
purposes.  

6.1 Graphical User Interface 
Figure 6-1 shows the Cursor-on-Target Message Router message router’s graphical user 
interface (GUI).  On it there will be circled numbers pointing to specific areas of interest.  
Each of these numbers corresponds to the following subsections of 6-1. 

 

 
Figure 6-1.  Message Router Graphical User Interface 



 

6-2 

6.1.1 PubSub (1) 
There are three options under the PubSub pull-down menu; the one of importance to us now 
is “Data0”.  The ‘0’ specifies the channel number.  The use of channels will be discussed in 
section 6.2.  Selecting “Data0” will launch a small window, seen in Figure 6-2.  There is one 
data entry block and three checkboxes.  The data entry block, which in this example is 
labeled, “ShotSpotter”, is used to determine where the message router listens for incoming 
messages.  The format of this is: “Protocol:Host:Port.”  The Cursor-on-Target Message 
Router supports a few protocols, the most common being udp and tcp.  Examples of these 
include: 

1. udp:localhost:19000 

2. tcp:192.0.0.1:17569 

The first checkbox, labeled “Data0Enable”, will enable listening on this channel when 
selected.  The next checkbox, “Data0Monitor”, will enable monitoring of this channel when 
selected.  The last checkbox, “Data0Announce”, will announce activity of this channel to the 
log window when selected. 

 
Figure 6-2.  PubSub Data Window 

 

6.1.2 Active Subscription Buttons (2) 
The most important button is ‘New,’ which creates a new, generic subscription.  The 
representation of this is seen in the Active Subscription Window (see section 6.1.3 for more 
details).  This subscription has no routing rules or modifications associated with it.  The ‘Edit 
Event, ‘Edit Tests,’ and ‘Edit Mods’ buttons are used to change the subscription to route 
specific messages to the desired host.   

Most buttons require one or more subscriptions to be highlighted in order to work.  Once selected, 
these buttons are used to modify the characteristics of that subscription.  Some other buttons, 
namely ‘Show All’ and ‘Refresh,’ perform general operations on all of the subscriptions.  The 
names and functions of each button are listed below in Table 6-1.   



 

6-3 

 

Table 6-1.  Active Subscription Buttons and Functions 

Name Function 

On/Off Toggles the subscription between off and on. 

Channels Pops up a window that allows you to manage channels. 

Edit Event Pops up a window that allows you to change basic information.  See section 5.2 for more info. 

Edit Tests Pops up a window that allows you to set tests for rerouting messages.  See section 5.3 for more 
info. 

Edit Mods Pops up a window that allows you to set modifications to matching messages.  See section 5.4 
for more info. 

New Creates a new, generic subscription in the Subscription Window (section 6.1.3). 

Drop Permanently removes the selected subscription. 

Hide Removes the subscription from the Active Subscription window, while remaining active.  
“…hidden…” will appear in Subscription Window.   

Show All Restores hidden subscriptions to their normal state.  Double clicking “…hidden…” produces 
the same result. 

Zero Cnt Resets the “Sent” count for this subscription to 0 (zero). 

Send Cached Resends all cached messages to the subscription, where matching messages will be resent. 

Flush Queue Deletes any messages in the message queue. 

Monitor Toggles the monitoring option in the “Mon” field, denoted by the ‘m’ or ‘M’ characters. 

Announce Toggles the announcing option in the “Mon” field, denoted by the ‘a’ or ‘A’ characters. 

Refresh Updates the Subscription Window.  Will automatically update every 5 seconds. 

  

6.1.3 Active Subscription Window (3) 
This window shows a list of active subscriptions in The Cursor-on-Target Message Router.  
For each subscription there are eight fields of identifying information.  The first is “Ena,” 
short for enabled.  This can have two values: “(Off)” and “(On)”.  While a subscription is off, 
it will not forward any matching CoT messages.  The second field, “Mon,” short for monitor, 
is either blank or ‘m’ when the subscription is disabled and ‘M’ when the subscription is 
enabled.  Monitoring a subscription is primarily used in testing, and sends any matching 
messages to the Test port (PubSub->Test).  This field is also used to display whether or not 
announcing is enabled for the subscription.  If announcing is enabled, an ‘a’ or ‘A’ will also 



 

6-4 

be shown in this field.  It is possible for both monitoring and announcing to be enabled for a 
subscription, which is denoted by ‘ma’ or ‘MA’ in the field.  The third field is the user 
identification, or Uid, which is used to tell subscriptions apart.  The fourth field, “Sent,” 
shows how many messages matching this subscription have been rerouted, while the fifth 
field, “Queued,” shows how many messages are waiting to be rerouted.  “Idle,” the sixth 
field, shows the time since the last message this subscription rerouted.  The seventh field 
shows the host that the subscription will reroute messages to.  The eighth field shows the 
number of the channel being used.  The final field, “Notes,” shows general comments about 
the subscription.  

Double clicking a subscription within will create a pop-up window with the full details of the 
subscription, minus its routing rules or modifications.  When an event is highlighted and the 
‘Hide’ button is clicked, the subscription will disappear.  A line reading “…hidden…” will 
appear in the Subscription Window as long as there is at least one hidden subscription. 
Hidden events can be redisplayed when “…hidden…” is double clicked or the ‘Show All’ 
button is pressed. 

6.1.4 Log Window (5) 
Status updates on subscriptions, received CoT messages, help text, and errors are displayed 
in the log window.  Lines of greater importance are highlighted in green, yellow, and red.  
Yellow and red indicates that the message is a warning or error, respectively.  The contents 
of the log window are written into a logfile for later retrieval.  The log window can be 
manipulated by the pull-down menu Log.  There are seven options in total:  Scroll, Mark, 
Note, Clear, Split, Split & Init, Hide.  

6.2 Editing Channels 
The Cursor-on-Target Message Router makes use of channels to listen for incoming messages.  
There can be up to 16 channels for any specified data source.  The numbering for these channels 
starts at 0, which goes up to and includes channel 15.  To edit the number of channels being used, 
select “Edit” from the “Config” pull-down menu, and then select “Channels” from the subsequent 
“Edit” pull-down menu.  Selecting “Channels” will launch a small window, seen in Figure 6-3.  
The number of channels can be selected from the “DataChannels” drop-down selection box.  The 
number of channels that can be selected are 1, 2, 4, 8, and 16.  Clicking “OK” will close the 
window and temporarily save the number of channels, but the changes will not take effect 
immediately. 

 
Figure 6-3.  Channels Window 



 

6-5 

In order for these changes to take effect, the configuration must be saved and the Cursor-on-
Target Message Router must be restarted.  To save the configuration, select “Save” from the 
“Config” pull-down menu.  To restart, select “Exit” from the “File” pull-down menu and start the 
Cursor-on-Target Message Router once it has closed. 

Specific channels can be individually modified through the Channel Manager, shown in Figure 6-
4, which can be brought up by selecting the “Channels” button in the Active Subscription Buttons 
section described in section 6.1.2.  The Channel Manager contains five buttons on the left side of 
the window:  Edit, On/Off, Monitor, Announce, and Zero Count.  The “Edit” button allows you to 
modify the name of the selected channel and where that channel listens for incoming messages.  
The “On/Off” button toggles the channel on and off, which determines whether or not data is 
received.  The “Monitor” and “Announce” buttons toggle monitoring and activity announcements 
on and off for the channel respectively.  The “Zero Count” button resets the “RxCount” field for 
the selected channel to 0. 

The Channel Manager also lists all available channels on the right side of the window, with 
data for each channel specified in seven fields: Chan, Ena, Mon, Name, RxCount, Idle, and 
From.  The “Chan” field, short for “channel”, specifies the number of the channel, which can 
range from 0 to 15.  The “Ena” field, short for enabled, can have two values: “(Off)” and 
“(On)”.  While a channel is off, it will not receive any messages.  The “Mon” field, short for 
monitor, shows whether or not announcing or monitoring is enabled for the channel.  As in 
the Active Subscription window, announcing is denoted by an ‘a’ or ‘A’ and monitoring is 
denoted by an ‘m’ or ‘M’.  The “Name” field displays the name of the channel.  The 
“RxCount” field displays the number of messages received on the channel.  The “Idle” field 
displays the amount of time that has passed since the last message has been received.  The 
“From” field displays the host from which messages are being received.  

 



 

6-6 

 
Figure 6-4.  Channel Manager Window 

6.3 Editing Events 
To edit a subscription event, that subscription should be highlighted in the Active 
Subscription Window and the “Edit Event” button must be pressed.  The resulting pop-up 
window can be seen in Figure 6-4.  This is the default case.  Editing the Publish, Start, Stale, 
and Uid fields is important regardless of the type of subscription.  These are used to 
determine the publish destination timeframe in which the subscription exists (start and stale), 
and its name as shown in the Active Subscription Window. 

In addition to defining the subscription, a simple routing test can be added that reroutes an 
incoming CoT event if its position is within the boundary set here.  This is done by changing 
the point fields:  ce, hae, lat, le, lon.  An event with the same lat, long, and hae will 
automatically be rerouted, as will any event that is within the range of error (ce and le).  As 
set in the default case, this test will not run, but any field changed will test for that parameter 
and send only those that pass.  Further description can be found in Table 6-2. 



 

6-7 

 
Figure 6-5.  Event Parameters Window 



 

6-8 

 

Table 6-2.  Event Parameters Description 

Field Description Example 

Publish Host, port, and type connection. Multiple 
destinations can be listed, separated by a comma. 

udp:localhost:10000 

Start Start time for subscription. Defaults with time that 
subscription was created 

2005-02-17T18:38:22.00Z 

Stale This is the stop time for the subscription. Initially 
set to a year after subscription was started. 

2006-02-17T18:38:22.00Z 

UID Display name of subscription Lat-Lon-Test 

Point.lat Latitude in decimal degrees (North – Plus, South – 
Minus) 

35.0125, -45.1 

Point.lon Longitude in decimal degrees (East – Plus, West – 
Minus) 

123.5, -170.0 

Point.hae Height above ellipsoid (elevation) in meters. 448.4 

Point.ce Circular error radius in meters 25 

Point.le Linear error in meters (height above target) 10 

   

6.4 Editing Tests 
The “Edit Test” button instantiates a pop-up window as seen in Figure 6-4.  Initially, all 
fields in the window are blank, though the figure contains examples.  The two columns, Field 
and Tests, are chosen to make very specific tests for rerouting CoT messages.  An 
understanding of CoT XML is required to set-up effective tests.  The Field column represents 
the attributes of the XML (ex. type, stale, etc.).  Nested attributes, such as the “lat” attribute 
hierarchically under “point,” should be separated with a “.” (period) (ex. point.lat, or 
detail._flow-tags_).  The Tests column should be filled with tests that correspond to the Field 
entry in the same row.  For a list of available tests, see Table 6-3.  In order for an incoming 
CoT message to be rerouted to the location specified by the subscription, that message must 
pass all tests found within the Edit Test window AND any position tests from the Edit Event 
window.  See Section 7 for detailed step-by-step examples. 

 



 

6-9 

 
Figure 6-6.  Edit Test Window 

 

Table 6-3.  Edit Test “Tests” 

Category Tests Description 
Test of tag 
existence 

exists True if field exists in event - 'exists()' 
missing True if field does not exist in event - 'missing()' 

Test if node 
has certain 

children 

child True if entity has any children 'detail._flow-tags_=child(ncct,adocs,tadilj)' 

hasany True if entity has any children 'detail._flow-tags_=hasany(ncct,adocs,tadilj)' 

Behaves the same way as a child test 

hasnone True if entity has none of these children 'detail._flow-
tags_=hasnone(ncct,adocs,tadilj)’ 

hasall True if entity has all of these children 'detail._flow-
tags_=hasall(ncct,adocs,tadilj)'" 

Event 
predicate tests 

is True if event matches any predicate - 'is(neutral,friend)' (see appendix A) 

isall True if event matches all predicate - 'isall(neutral,ground)’ 

isany True if event matches any predicate - 'isany(bits,tasking)' 

isnot True if event does not match any predicate - 'isnot(neutral,friend)' 

Matching 
against a field 

match True if field does match regexp - 'match(a-h.*)’ 

nomatch True if field doesn't match regexp - 'nomatch(t-.*) 

 Indirect  

Numerical n_eq True if event is numerically equal to value - 'n_eq(10)' 



 

6-10 

Category Tests Description 
predicate 

Tests 
n_gt True if field is greater than argument - 'n_gt(27.1)' 

n_in True if field is in numeric range  - 'n_in(100,200)' 

n_lt True if field is less than argument - 'n_gt(3.14159267)' 

n_out True if field is out of numerical range - 'n_out(100,200)' 

n_range True if field is in numeric range - 'n_range(100,200)' 

Value in file 
test 

infile True if field is listed in specified file - 'infile(list.txt)' 

notinfile True if field is not listed in specified file - 'notinfile(list.txt)' 

String 
predicate tests 

s_eq True if field is lexocographicly equal to arg - 's_gt(dino)' 

s_gt True if field is lexocographicly greater than arg - 's_gt(dino)' 

s_in True if field is in lexocographic (string) range - 's_in(betty,wilma)' 

s_lt True if field is lexocographicly less than arg - 's_gt(dino)' 

s_out True if field is not in lexocographic (string) range - 's_out(bambam,pebbles)' 

s_range True if field is in lexocographic (string) range - 's_range(barney,fred)' 

 

   

6.5 Editing Mods 
Pressing the “Edit Mods” button creates the pop-up window seen in Figure 6-5, albeit a new 
subscription’s Edit Test window will be empty.  The Field column in Figure 6-7, like the 
Field column in the Edit Tests window, is where CoT XML attributes are placed.  The Edits 
column will contain the modifications to the associated XML attributes.  A list of Edits can 
be found in Table 6-4.  Some Edits don’t require specific attributes, but in order for the Edit 
to work, the associated Field must contain some text, either a random attribute or word (in 
figure 6-7 the field names placeholder and placeholder2 are used).  CoT messages that pass 
the tests laid out in Edit Tests and Edit Events will have that message modified as described 
in Edit Mods before it is rerouted.  These modifications do affect cached messages.



 

6-11 

 

 
Figure 6-7.  Edit Mods Window 

 

 

 

 

Table 6-4.  Edit Mods “Edits” 

Edit Description 
delete() Delete a node and all its children - 'delete(detail.adocs)' 

dump() Show the XML of all events that match this subscription - 'dump()' 

rate() Set the publication rate for this subscription (events per second sent) - 'rate(0.1)' 

set() Set an attribute to some value - 'detail._adocs.foo=set(1234)' 

timestamp() Set this field to a CoT timestamp a number of seconds in the future - 'detail._flow-
tags_.test=timestamp(0)' 

watch() Announce all events that match this subscription - 'watch()' 

 

 

 

 

 

 

 



 

6-12 

6.6 Managing Subscriptions and Caches 
 

Subscriptions are not persistent between sessions, so they must be saved and reloaded when 
closing and opening the program, respectively.  This is done by selecting the appropriate choice 
from the pull down menu “File->Save Subs” or “File->Load Subs”.  The subscriptions are saved 
in a “.sub” file using a standard Windows file save dialog box.  This file contains the full 
subscription Event, Tests and Mods.  A .sub file can also be automatically loaded by selecting 
“Config->Edit->Load” from the pull down menu and placing the name of the file into the 
“AutoLoadFile” entry box as seen in Figure 6-6.  When reloaded, these subscriptions will appear 
the same except for their Sent, Queued, and Idle statistics, which will be reset. 

All incoming events are locally cached so that new, or formally un-enabled, subscriptions can 
retransmit matching events.  To clear this cache from the local memory select “File->Debug” 
from the pull down menu, which will open the window seen in Figure 6-7.  This is a larger 
version of the same Log Window, with five buttons, and a section of statistics.  The buttons have 
the potential to be devastating and should only be used carefully.  The first, “Clear Counts”, will 
zero the number of Sent and Queued events for every subscription.  The last button, “Flush 
Cache”, will remove the cache from memory and cannot be recovered.  The statistics reflects the 
number of incoming and outgoing events, as well as the number of errors, cached events and 
expired subscriptions (among others). 

 

 

 
Figure 6-8. Load Window 



 

6-13 

Figure 6-9. Debug Window



 

7-1 

7 Subscription Examples 
The following examples are designed to illustrate methods for creating subscriptions to filter 
messages based on different situations.  Each describes the tests necessary as well as a 
rationale/explanation for each decision. 

7.1 Blue Force Tracking 
Blue force tracking is a way of plotting the location of friendly units on a detailed map and a 
valuable tool to prevent fratricide during combat.  With multiple instances of that program 
running, one instance may only track friendly units in certain ranges of latitude and 
longitude.  The following tests show you how to reroute only messages dealing with friendly 
troops in a specific range of locations.   

1. The first area of interest is matching all friendly units.  Friendly units are of type 
“a-f” (atom-friendly).  They can have further classification, such as Ground or 
Air, but all friendlies are requested.  The test “match” allows the use of regular 
expressions, which are beneficial for the open-ended feature of the type category, 
which is the field that will be tested.  So this test will look like:  type = match(a-
f.*).  The “.*” following the “a-f” is a reg exp.  The period represents any single 
character, while the asterisk means zero of more of the proceeding element.  This 
yields a test for all types that start with “a-f” and followed by anything. 

2. The second test should limit messages to only those in a specific area.  There are 
two ways to do this:  using the cylindrical error field of a position test (section 
7.2) or by checking whether the message’s “point.le” and “point.lon” are within 
range.  The two choices offer different pros and cons, such as a circular area of 
interest or a square area of interest.  Because the blue force tracking map is 
rectangular, we’ll opt for the latter option.  Because there are two fields, it will 
require two separate tests.  The finals tests would look like “point.le = 
n_range(x,y)” and “point.lon = n_range(j,k)”, where x,y,j,k are different numbers.  
These check to see if the points are within the numerical range desired. 

 

 
Figure 7-1.  Example 1 Tests 



 

7-2 

7.2 RainDrop and ADOCS 
RainDrop is a targeting system that uses stereo imagery to simulate 3D landscapes, which 
yields precise coordinates of targets.  It is made to “speak” CoT by the plug-in program 
raindropd.  ADOCS, among other abilities, acts as a target approval system, allowing the 
required approvals to be gotten quickly, which leads to faster responses and strikes.  Say a 
stationary unit wishes to get all approved mensurated targets from RainDrop within ~1000 
nautical miles.  The Cursor-on-Target Message Router would then have to check for all 
messages in this range and if they were mensurated by raindropd sent to ADOCS for 
approval, or if approved by ADOCS rerouted to the stationary unit.  This will require two 
different subscriptions. 

1.  Some tests will be common to both subscriptions, namely, a positional test, an 
atomic test for hostiles, and a test that the message was created via RainDrop.  The 
positional test is easy, and should be in the Edit Event window, not the Edit Test 
window.  The point.lat, point.lon, and point.hae are set to the position of the 
stationary unit.  The cylindrical error, point.ce, is set to 1852000 meter (1000 NM).  
The linear error, point.le, doesn’t matter so it is kept at 99999999. 

2. The next test is for hostility, and is completed exactly like step one in the previous 
example, but changing friendly for hostile.  The test looks like:  type = match(a-h.*). 

3. To test for RainDrop, we’ll use the CoT XML sub-schema flow-tags.  Flow tags, 
hierarchically under detail, show what systems have touched the CoT message and at 
what time.  If a message was mensurated with RainDrop, it will have a flow-tag 
“raindropd” (because raindropd actually creates the XML message).  To check the 
existence of that flow-tag, we’ll use the test “exists().”  The test will look like: 
detail._flow-tags_.raindropd = exists(). 

4. The differences between the two subscriptions come in testing for ADOCS approval.  
If a message has gone through ADOCS, it will also have a flow-tag of “adocs.”  
Using the same field (detail._flow-tags_.adocs), but with different tests, will finish 
the subscriptions.  The test “missing()” returns true if the field in question isn’t 
present, so any message needing ADOCS approval will have the test: detail._flow-
tags_.adocs = missing().  Any message already through ADOCS will have the test:  
detail._flow-tags_.adocs = exists(). 

 



 

7-3 

 
Figure 7-2.  Example 2 Tests Before ADOCS 



 

A-1 

Appendix A  
Is Predicate Tests 

The following table is a list of the possible entries that can be tested against using “Is()”.  
The “Is” test is typically used against the CoT type field, though there are other fields to test 
against, namely how and qos.  The first column is the test entry, while the second column 
shows the regular expression that it corresponds to, were you using the “match()” test.  There 
are further subsections below with descriptive headers. 

 

Test Reg Exp Test Reg Exp 

'friend' ="^a-f-" 'bits.friend' ="^b-(g|r)-f-" 

'friendly' ="^a-f-" 'bits.friendly' ="^b-(g|r)-f-" 

'hostile' ="^a-h-" 'bits.hostile' ="^b-(g|r)-h-" 

'unknown' ="^a-u-" 'bits.unknown' ="^b-(g|r)-u-" 

'pending' ="^a-p-" 'bits.pending' ="^b-(g|r)-p-" 

'assumed' ="^a-a-" 'bits.assumed' ="^b-(g|r)-a-" 

'neutral' ="^a-n-" 'bits.neutral' ="^b-(g|r)-n-" 

'suspect' ="^a-s-" 'bits.suspect' ="^b-(g|r)-s-" 

'joker' ="^a-j-" 'bits.joker' ="^b-(g|r)-j-" 

'faker' ="^a-k-" 'bits.faker' ="^b-(g|r)-k-" 

'unknown' ="^a-u-" 'bits.unknown' ="^b-(g|r)-u-" 

'atoms' ="^a-" ‘bits' ="^b-" 

'airborne' ="^a-.-A" 'strikewarn' ="^b-S" 

'air' ="^a-.-A" 'cuepoint' ="^b-m-p-s-p-i" 

'ground' ="^a-.-G" 'click' ="^b-m-p-m-c" 

'installation' ="^a-.-G-I" 'spi' ="^b-m-p-s-p-i" 

'vehicle' ="^a-.-G-E-V" 'refpoint' ="^b-m-p" 

'equipment' ="^a-.-G-E" 'grid' ="^b-m-g-o" 



 

A-2 

Test Reg Exp Test Reg Exp 

'gnd' ="^a-.-G" 'tacelint' ="^b-d-r" 

'surface' ="^a-.-S" 'image' ="^b-i" 

'sea' ="^a-.-S" 'subscription' ="^t-b" 

'sam' ="^a-.-A-W-M-S" 'mootw' ="^b-r-.-O" 

'subsurface' ="^a-.-U" ‘any’ =".*" 

'sub' ="^a-.-U" ‘true’ =".*" 

'uav' ="^a-f-A-M-F-Q-r" 'false' ="^$" 

Tasking or request types 'report' ="^b-r-" 

'tasking' ="^t-" 'weather' ="^b-w" 

't.remarks' ="^t-x-f" 'graphic' ="^b-g-" 

't.state' ="^t-x-s" 
Machine-to-machine request-response 

processing 

't.sync' ="^t-x-s" 'reply' ="^y-" 

't.isrreq' ="^t-s" 'r.complete' ="^y-c" 

't.cancel' ="^t-z" 'r.success' ="^y-c-s" 

't.commcheck' ="^t-x-c-c" 'r.fail' ="^y-c-f" 

't.dgps' ="^t-x-c-g-d" 'r.failed' ="^y-c-f" 

't.strike' ="^t-k" 'r.ack' ="^y-a" 

't.destroy' ="^t-k-d" 'r.receipt' ="^y-a-r" 

't.investigate' ="^t-k-i" 'r.wilco' ="^y-a-w" 

't.target' ="^t-k-t" 'r.executing' ="^y-s-e" 

These are compared against the "how" field 'r.rejected' ="^y-c-f-r" 

'h.mensurated' ="^m-i" 'r.stale' ="^y-c-f-s" 

'h.human' ="^h" 'r.review' ="^y-s-r" 

'h.retyped' ="^h-t" 'r.completion' ="^y-c" 

'h.machine' ="^m" QoS predicates 



 

A-3 

Test Reg Exp Test Reg Exp 

'h.gps' ="^m-g" 'q.guaranteed' ="^.-.-g" 

'h.nonCoT' ="^h-g-i-g-o" 'q.assured' ="^.-.-g" 

'h.gigo' ="^h-g-i-g-o" 'q.deadline' ="^.-.-d" 

'h.estimated' ="^h-e" 'q.congestion' ="^.-.-c" 

'h.calculated' ="^h-c" 'q.low' ="^[0-3]-.-." 

'h.transcribed' ="^h-t" 'q.med' ="^[4-6]-.-." 

'h.pasted' ="^h-p" 'q.high' ="^[7-9]-.-." 

'h.magnetic' ="^m-m" 'q.routine' ="^[0-1]-.-." 

'h.ins' ="^m-n" 'q.priority' ="^[2-3]-.-." 

'h.ins-gps' ="^m-g-n" 'q.immediate' ="^[4-5]-.-." 

'h.simulated' ="^m-s" 'q.flash' ="^[6-7]-.-." 

'h.configured' ="^m-c" 'q.flashover' ="^[8-9]-.-." 

'h.radio' ="^m-r" 'q.replace' ="^.-r-." 

'h.passed' ="^m-p" 'q.follow' ="^.-f-." 

'h.fused' ="^m-f" Operational predicates 

'h.tracker' ="^m-a" 'o.exercise' ="^e-" 

'h.ins+gps' ="^m-g-n" 'o.operation' ="^o-" 

'h.dgps' ="^m-g-d" 'o.simulated' ="^.-s-" 

'h.eplrs' ="^m-r-e" 'o.simulation' ="^.-s-" 

'h.plrs' ="^m-r-p"   

'h.doppler' ="^m-r-d"   

'h.vhf' ="^m-r-v"   

'h.tadil' ="^m-r-t"   

'h.tadila' ="^m-r-t-a"   

'h.tadilb' ="^m-r-t-b"   



 

A-4 

Test Reg Exp Test Reg Exp 

'h.tadilj' ="^m-r-t-j"   

'h.nonCoT' ="-g-i-g-o"   



 

DI-1 

 


	1 Document Goal
	2 Cursor-on-Target Information
	2.1 CoT Base Schema
	2.2 Cot Sub-Schema
	2.3 CoT Type Field Details

	3 Regular Expressions
	4 Additional Information
	5 Cursor-on-Target Message Router Overview
	6 General Operation
	6.1 Graphical User Interface
	6.1.1 PubSub (1)
	6.1.2 Active Subscription Buttons (2)
	6.1.3 Active Subscription Window (3)
	6.1.4 Log Window (5)

	6.2 Editing Channels
	6.3 Editing Events
	6.4 Editing Tests
	6.5 Editing Mods
	6.6 Managing Subscriptions and Caches

	7 Subscription Examples
	7.1 Blue Force Tracking
	7.2 RainDrop and ADOCS




